Study Overview

 

"We cannot solve our problems with the same thinking we used when we created them."
Albert Einstein

Sustainability in buildings is not just a trend, it's the only way forward. The global commitment to offer sustainable and affordable built environments will include a transition towards CO2-neutral solutions for both new and existing buildings. This task is not only challenging but also requires lots of motivated people with expertise in the field of building energy efficiency.

With our advanced Masters course Sustainable Building Systems, you can not only be a part of this transition but also drive it with your expertise.

Did you know that buildings today account globally for substantial primary energy usage and electricity consumption? In the backdrop of global warming and limited availability of energy resources, our Masters program offers you an opportunity to apply your skills towards solving the global problems with future technologies.

Short formSBS
Type of studyFull time
Standard period of study3 semester
ClosingMaster of Engineering (M.Eng.)
Start of studieswinter semester
Admission restrictions specific
Lecture locationFeuchtwangen
Language of instructionEnglish
Course management Prof. Dr. Haresh Vaidya
Student advisory serviceProf. Dr. Haresh Vaidya
Prof. Dr. Mathias Moog
Student servicesstudierendenservice.sbs(at)hs-ansbach.de

 

You will not only focus on establishing sustainable and comfortable living environments but also deal with approaches to improve energy efficiency. This involves the study of related disciplines like building technology and services, as well as the design of heating, ventilation, and air conditioning (HVAC) systems. The ongoing energy crisis has increased awareness of the need to transform the way we create, store, and use energy, and buildings have been identified as one of the major focus areas that require innovative , fast & easy to  implement solutions if we are to successfully reach the CO2 reduction targets set by the UN. This specialized course will allow you to learn and apply methodologies for modeling energy efficiency, planning low carbon retrofit solutions, conducting performance gap analysis, assessing and implementing smart solutions for sustainable buildings. This Masters programme is taught by prominent academics and industry specialists, which will give you practical and academic experience in innovative energy technologies for building and industrial applications. They include energy generation and storage methods such as photovoltaics, heat pumps, battery storage, seasonal heat storage, etc. to name a few. The emerging topic of sector coupling involves bringing together different renewable energy sources and using them as per demand. Every building needs a strong foundation. You’ll deep dive into the fundamental subjects of heat transfer, energy conversion, electrical engineering and building physics, which will be the key to successful implementation of future technologies. You will also obtain a complete awareness of critical sustainability concerns such as life cycle management and circular economy. Throughout your studies, you will have access to our cutting-edge laboratory facilities as well as access to industry standard specialized softwares, thus giving you the opportunity to benchmark different tools.

Sustainable, low-to-zero-emission buildings are the need of the hour and governments across the globe are taking concrete measures to achieve climate neutrality in the building sector. This has led to a substantial increase in job openings looking need for experts who can design and manage projects an develop products for increasing energy efficiency of the built environment. The carefully tailored theoretical courses are complemented with practical modules, in which students apply their new knowledge. Through an integrated design process, our students collaborate in small groups to create energy-efficient concepts and buildings and to analyze the ramifications of various design choices using supported computer tools and processes. Interdisciplinary teams involving different engineering backgrounds as well as inter-culturality shall work together in project groups on challenging topics and present their findings to the leading experts in this field. In addition, site visits, and industry guest lecturers are planned in the course.

Our aim is to equip you with all the skills and expertise so that you can not only be a part of the transition towards climate neutrality but be a driving force behind it.

In the “Sustainable Building Systems” master’s degree, in addition to specialist training, skills are also to be developed in order to be able to achieve a managerial position or professional independence, e.g. as a certified energy consultant.

  • The aim of the course is to impart a broad-based education in the essential areas of building technology through practice-oriented teaching based on scientific knowledge and methods
  • Appropriate training in the basics and specializations enables students to recognize the determining relationships and to gain the flexibility that is needed to do justice to the rapidly advancing technical development.
  • The graduates of this master's program recognize and react to the constantly changing technical requirements for building technology and develop solution strategies with a view to economic, ecological, social and societal aspects.

Learning Outcome

  • Increasing efficiency and using renewable energies are a new global challenge that graduates of the course can help to shape.
  • Building technology is only dealt with in outline in the basic training courses in structural engineering and architecture. The development of environmental technologies makes automation-supported building technology one of the most innovative areas of the construction industry. It is inextricably linked to requirements such as energy efficiency and environmentally friendly construction. Tailored to this, the graduates learn to plan and implement heating, ventilation, air conditioning and electrical components as an overall system to low-energy and passive house standards.
  • Subject areas of building technology are modern technical building equipment with renewable heating, ventilation and air conditioning technology, control technology and building automation for energy-optimized operation of systems. In addition to cross-trade subjects, simulation tools , facility management and building information modeling (BIM) are taught
  • Application-oriented knowledge of building technology and the sustainable planning, construction and operation of buildings
  • They know the technical and normative basics of all trades in building technology.
  • The graduates understand the fundamental engineering principles .
  • They have knowledge of the connections and interactions of building technology with the building envelope
  • The engineers know which different actors are involved in planning and execution processes and where interfaces form.
  • You have an overview of the economic and social impacts over the entire life cycle of a building.

Example of Sustainable Buildng Systems

Lighting systems: Smart lighting systems employ sensors and automation to alter lighting levels based on occupancy, time of day, and natural light levels. This can assist to cut energy usage while also improving the user experience.

HVAC systems: Smart HVAC systems employ sensors and data analytics to improve heating and cooling operations depending on occupancy, weather, and other factors. This can assist to minimize energy use while also increasing comfort for building occupants.

Smart security systems monitor building access and detect possible threats using sensors, cameras, and access control systems. They may also be connected with other building systems, such as lighting and HVAC, to enhance building operations and increase safety and security.

Occupancy monitoring systems: Occupancy tracking systems track the movement of individuals within a building using sensors and data analytics. This can assist building owners and operators in optimizing space use and improving the user experience.

Building automation systems integrate several building systems, such as lighting, Ventilation, and security, onto a single platform. Building operators may use this to optimize building operations and increase energy efficiency, safety, and security.

These are only a few examples of smart building systems; many more systems and technologies are being created and deployed in order to produce more intelligent and sustainable buildings.

...Since not every system comprised of individual energy producers, consumers, and storage devices is "smart" by definition. ...  Moreover, an intelligent instance must be there that interprets this knowledge and data into choices and conveys them to the participants in real time or as a prediction or schedule.   More of these very sophisticated energy systems will develop in the future as a crucial building element for the energy transition and a sustainable and regenerative energy supply.

Admission requirements and application for the course

start the SBS master’s program in the winter semester (October 1, 2023) . As for all degree programs, timely application via the online application portal is also required for this degree program. Please note that the regular deadlines are cut-off deadlines . We must therefore receive your application no later than the last day of the respective deadline (May 1 - May 31, 2023).

All information about the application can be found Sie HERE.

In addition, a successfully completed university degree in a relevant course or an equivalent domestic or foreign degree with an overall examination grade of at least 2.5 is required, which usually comprises 210 ECTS points, but at least 180 ECTS points. Courses that are based on the fundamentals of engineering (AIW, NIW, ESW, etc.), electrical engineering, mechanical engineering, physics, computer science, supply engineering or comparable are considered relevant .

(BayHIG) applies to applicants to Bavarian Higher Education Innovation Act. Admission Requirements:

  1. Bachelor's degree with 180 ECTS points (Engineering, electrical engineering, mechanical engineering, physics, computer science, supply engineering or comparable)
  2. Language: English: IELTS at least 6,5; TOEFL at least 85 points (B2) / German: A1
  3. Bachelor (or comparable) grade point average min. 2.5 (uni-assist)
  4. Letter of motivation min. 200 to max. 500 words

Course Structure

The "Sustainable Building Systems" master's degree comprises 90 ECTS, which can be completed in three semesters. If you start with a degree that comprises less than 210 ECTS, you may have to plan additional time for catching up on modules/ECTS.

In the first semester, elementary technical knowledge about the components and participants of the system is imparted through the module "Electrical Engineering for Energy Applications". "Simulation of Building Energy Concepts" is one of the five digital modules in the first semester that deals with the interaction of the individual participants in the energy system. "Building Physics and Energy System Technologies" teaches students about physical phenomena affecting buildings, including the behavior of heat, air, and moisture, and their impact on energy efficiency, indoor air quality, and human comfort. In “Photovoltaics engineering”, students learn the basics of solar and go through the design, development, and implementation of technologies that convert sunlight into electricity using semiconductor materials. An elective module allows students to explore other exciting topics in the first and second semesters."

In the second semester, the “Virtual Power Plant” deals with another essential component for the building energy systems of the future, namely the combination of decentralized energy producers with systems for storing or otherwise using excess energy in so-called Power- to -X systems for a reliable supply. “Sustainable HVAC ” (heating, ventilation, and air conditioning) involves the design, installation, and operation of HVAC systems that reduce energy consumption, minimize environmental impact, and enhance indoor air quality and human comfort. “Smart Building Controls” refers to the use of automated systems and technology to optimize the performance of building systems, including HVAC, lighting, and security, to enhance energy efficiency, occupant comfort, and operational effectiveness. With “BIM (Building Information Modeling)” students learn  digital representation of a building's physical and functional characteristics that facilitates collaboration and information exchange among project stakeholders. With "Basics Sustainability" students learn the most important sustainability models and analysis methods for sustainable development. From environmental and resource economics, basic methods for a fair distribution of environmental goods as well as environmental policy instruments and tools for sustainable spatial design are presented

The third semester enables selected topics to be deepened as part of the “Master's Thesis” , which is planned in cooperation with various companies. The “Master's seminar on scientific work” accompanies the master's thesis, opens up the exchange between students in the form of lectures and provides the tools for solid scientific work.

You complete the master’s degree in three semesters. After successful completion, you will be awarded the internationally recognized academic degree Master of Engineering ( M.Eng .):

Job Prospects

Smart building systems are becoming increasingly popular in today's world due to their ability to improve energy efficiency, optimize space utilization, enhance safety and security, and provide a better user experience.   As more buildings become smart, the demand for skilled professionals in these fields will continue to grow.   In addition, with the increased focus on sustainability and energy efficiency, there will be an even greater need for experts in smart building systems.

Furthermore, the growth of smart cities and the Internet of Things (IoT) will also create opportunities for professionals in smart building systems to collaborate with other industries and work on large-scale projects.

As a result, there are excellent job prospects for individuals with skills and expertise in smart building systems.

Branches

  • Freelance planner
  • Certified energy consultant
  • Architectural offices
  • Utilities and public utilities
  • Companies in building technology and plant construction
  • Property management
  • Facility management companies

Fields of activity

  • Planning of technical building systems in the areas
  • Construction of technical building systems
  • Specialist and manager in energy, building and supply technology companies
  • Advice on the technical sale of products, plants and systems for supply engineering and technical building equipment
  • Development of products, plants, supply engineering systems and technical building equipment
  • Planning and operation in the field of energy production and energy distribution

Staff

Prof. Dr.-Ing. Haresh Vaidya – Studiengangsleiter Sustainable Building Systems (SBS)

Prof. Dr.-Ing. Haresh Vaidya

Studiengangsleiter Sustainable Building Systems (SBS)

09852 86398-210 FEU 2.1.1 nach Vereinbarung vCard

Prof. Dr.-Ing. Haresh Vaidya

Prof. Dr.-Ing. Haresh Vaidya – Studiengangsleiter Sustainable Building Systems (SBS)

Studiengangsleiter Sustainable Building Systems (SBS)

Funktionen: 

  • Leiter des Campus Feuchtwangen
  • Studiengangsleiter Sustainable Building Systems (SBS)
  • Studienfachberatung Sustainable Building Systems (SBS)
  • Professor Angewandte Ingenieurwissenschaften (AIW)
  • Professor Nachhaltige Ingenieurwissenschaften (NIW)

Lehrgebiete:

  • Nachhaltige Gebäudetechnik
  • Effiziente Gebäude
Prof. Dr. Mathias Moog – Studienfachberatung Sustainable Building Systems (SBS)

Prof. Dr. Mathias Moog

Studienfachberatung Sustainable Building Systems (SBS)

0981 4877-315 92.1.44 nach Vereinbarung vCard

Prof. Dr. Mathias Moog

Prof. Dr. Mathias Moog – Studienfachberatung Sustainable Building Systems (SBS)

Studienfachberatung Sustainable Building Systems (SBS)

Funktionen:

  • Professor Angewandte Ingenieurwissenschaften (AIW)
  • Professor Nachhaltige Ingenieurwissenschaften (NIW)
  • Professor Künstliche Intelligenz und Kognitive Systeme (KIK)
  • Studienfachberatung Sustainable Building Systems (SBS)
  • Prodekan Fakultät Technik
  • Mitglied Fakultätsrat Technik

Lehrgebiete:

  • Angewandte Informatik
  • Ingenieurmathematik
  • Simulation

Vita:

  • Abitur and dem beruflichen Gymnasium in Marburg mit dem Schwerpunkt Elektrotechnik
  • Mathematik Studium an der Philipps-Universität Marburg
    Diplomarbeit über singuläre Lösungen nichtlinearer Systeme
  • Promotion am Fraunhofer ITWM in Kaiserslautern auf dem Gebiet der numerischen Simulation von Mehrphasenströmungen
  • Industrie Tätigkeiten
    • Entwicklung von Verfahren zur automatischen Klassifikation von Internet Inhalten (Familien Filter) bei Cobion (mittlerweile in IBM aufgegangen)
    • Leiter der Produktentwicklung eines Kunststoffspritzguss Simulationsprogramms (SIGMASOFT)  
  • Seit 2010 Professor an der Hochschule Ansbach

IT als durchgängiges Thema in der Lehre:

Der Einsatz von Software zieht sich durch meine gesamten Lehrveranstaltungen.

Dafür setze ich stark auf freie Software und populäre Entwicklungsumgebungen. Die Studierenden können das gelernte am eigenen Rechner ausprobieren und vertiefen. Hier ein paar Beispiele:

  • Ingenieurmathematik
    • Ich nutze Octave (im PC Pool an der Hochschule auch Matlab) sowohl für numerische Berechnungen als auch für symbolische Rechnungen
    • Für jeden Aufgabentyp aus der Ingenieurmathematik zeige ich exemplarisch wie diese Aufgaben in Octave / Matlab gelöste werden können
  • Statistik
    • Ich setze Excel / LibreOffice / OpenOffice für einfache Statistische Auswertungen ein
    • Octave / Matlab setze ich für komplexere Anwendungen ein
    • Die Beispiele in meinem Kurs greifen Anwendungen aus Ingenieurwissenschaften auf und zeigen exemplarisch wie der Einsatz von Software die Berechnungen unterstützen kann
  • Informatik
    Die Studierenden lernen im ersten Semester Java anhand der Netbeans Entwicklungsumgebung kennen. Auf diesen Grundlagen setzen meine Lehrveranstaltungen und Projektarbeiten auf.
    • Mikrocontroller
      Ich verwende die populäre Arduino Plattform. Die Einstiegshürde ist für Studierende sehr niedrig und das Angebot an günstiger Hardware und frei verfügbarer Software ist sehr groß
    • Robotik
      Wie bei den Mikrocontrollern setze ich auch hier auf die Arduino Plattform. Durch den Einsatz von 3D Druck lassen sich sehr schnell Prototypen und kleine Maschinen bauen.
  • Gebäudeautomation
    Freie Soft- und Hardware öffnet einen Zugang der die Studierenden zu eigenen Entwicklungen angegt. Daneben setze ich in der Lehre auch auf etablierte Standards wie z.B. KNX.
    • Hardware: Raspberry PI als Leitrechner, Arduinos als Sensoren / Aktoren
    • Software: openHAB für die Steuerung und Automatisierung, MySQL als Datenbank

Kommerzielle Software nutze ich wenn dies für die Anwendungen und die Verbindung zu anderen Lehrveranstaltungen von Vorteil ist.

  • Matlab
    Für meine Grundlagenfächer können die Studierenden Matlab oder Octave einsetzen.
  • ETS
    In der Gebäudeautomation  setze ich - neben freier Soft- und Hardware - auf dem KNX Standard mit der entsprechenden Software und Hardware auf.

Je nach Anwendungsgebiet setze ich auf weitere Software wie z.B. LabView, Comsol oder Berkeley Madonna.

Forschungsschwerpunkte:

  • Numerische Mathematik
    • Einsatz von Matlab und Ocatave für ingenieurwissenschaftliche Berechnungen
    • Algorithmen
  • Simulation
    • Modellbildung
    • Kopplung von Simulationsmodellen und Datenanalysen
    • Angewandte Informatik
      • Mikrocontroller Programmierung
      • Softwaretechnik
    • IoT, Smart Home und Gebäudeautomation
      • Wissenschaftlicher Partner bei KNX
      • Einsatz von openHAB in Lehre und Forschung
      • Energiecontrolling

    Dr. Gerd Hofmann

    Dr. Gerd Hofmann – Studienfachberatung (Student Advisory Service)

    Studienfachberatung (Student Advisory Service)

    Funktionen:

    • Studienfachberatung Smart Energy Systems (SES)
    • Wissenschaftlicher Mitarbeiter Campus Feuchtwangen
    • Koordinator Campus Feuchtwangen
    Prof. Dr.-Ing. Johannes Jungwirth – Stellvertretender Leiter des Campus Feuchtwangen

    Prof. Dr.-Ing. Johannes Jungwirth

    Stellvertretender Leiter des Campus Feuchtwangen

    09852 86398-220 FEU 2.1.1 / 92.1.41 (Montag) nach Vereinbarung vCard

    Prof. Dr.-Ing. Johannes Jungwirth

    Prof. Dr.-Ing. Johannes Jungwirth – Stellvertretender Leiter des Campus Feuchtwangen

    Stellvertretender Leiter des Campus Feuchtwangen

    Funktionen:

    • Stellvertretender Leiter des Campus Feuchtwangen
    • Studiengangsleiter Smart Energy Systems (SES)
    • Studienfachberatung Smart Energy Systems (SES)
    • Professor Angewandte Ingenieurwissenschaften (AIW)
    • Professor Nachhaltige Ingenieurwissenschaften (NIW)

    Lehrgebiete:

    • Digitalisierung der Energiewende
    • Energiemanagement

    Vita:

    • Studium Elektrotechnik mit Fachrichtung Energietechnik an der TU München
    • Promotion zum Dr.-Ing. an der TU München, Lehrstuhl für Energiewirtschaft und Anwendungstechnik (Prof. Hamacher / Prof. Wagner)
    • Director Sales and Business Development VPP Energy GmbH in München
    • Gründer und Technischer Geschäftsführer VK Energie GmbH

    Publikationen:

    • Johannes Jungwirth, Josef Lipp: Pilotprojekt zur Wärmeversorgung in Haushalten mit Stirlingmotor BHKW, Energiewirtschaftliches Seminar am Lehrstuhl für Energiewirtschaft und Anwendungstechnik der TU München, München, 08.02.2010 (Vortrag)
    • Timm Rössel, Johannes Jungwirth, Michael Fischer, Urs Wehmhörner: Studie zu Potenzialen intelligenter Energiemanagementsystemen in Nichtwohngebäuden, April 2010 (Veröffentlichung)
    • Timm Rössel, Johannes Jungwirth: Intelligentes Lastmanagement in Nichtwohngebäuden mit Gebäudeautomationssystemen, XIA –intelligente Architektur, Ausgabe 07-09/2010 (Veröffentlichung)
    • Urs Wehmhörner, Josef Lipp, Johannes Jungwirth: Wärme und Strommanagement für Mikro-KWK-Anlagen mit Pufferspeichern, VDE Kongress, Leipzig 2010 (Vortrag & Poster & Tagungsbandbeitrag)
    • Timm Rössel, Johannes Jungwirth, Michael Fischer, Urs Wehmhörner: Intelligentes Lastmanagement in Nichtwohngebäuden, VDE Kongress, Leipzig 2010 (Poster & Tagungsbandbeitrag)Timm Rössel, Johannes Jungwirth: Intelligentes Lastmanagement mit Gebäudeautomations-systemen, World Sustainable Energy Days, Wels 2011 (Poster & Tagungsbandbeitrag)
    • Timm Rössel, Johannes Jungwirth: Intelligentes Lastmanagement mit Gebäudeautomationssystemen, HLH, Ausgabe März 2011 (Veröffentlichung)
    • Josef Lipp, Johannes Jungwirth: Field Test with Micro-CHP-Units in Residential Buildings, MicroGen II Conference, 04.-06. April Glasgow (Vortrag & Tagungsbandbeitrag)
    • Urs Wehmhörner, Josef Lipp, Johannes Jungwirth: Optimization of Multifunctional Heating Systems, MicroGen II Conference, 04.-06. April Glasgow (Vortrag & Tagungsbandbeitrag)
    • Johannes Jungwirth, Timm Rössel: Demand Side Management in Nichtwohngebäuden, FfE-Fachtagung -Energieeffizienz – eine stete Herausforderung an Wissenschaft und Praxis, München am 13.05.2011 (Vortrag & Tagungsbandbeitrag)
    • Johannes Jungwirth, Timm Rössel, Louis von Mandach: Potential of Demand Side Management in Nonresidential Buildings, CIRED – 21stInternational Conference and Exhibition on Electricity Distribution, Frankfurt 06. -09. Juni 2011 (Vortrag & Tagungsbandbeitrag)
    • Johannes Jungwirth: District Heating, Micro-CHP and Demand Side Management, Workshop an der East Kazakhstan State Technical University (EKSTU) in Ust-Kamenogorsk, Kasachstan, 13.09.2011 (Vortrag)
    • Josef Lipp, Johannes Jungwirth, Florian Sänger, Urs Wehmhörner, Peter Tzscheutschler: Mikro-BHKW im Ein-und Zweifamilienhaus. Jahresbericht 2010. Hg. v. ESB Erdgas Südbayern, München 2010
    • Timm Rössel, Johannes Jungwirth: Smart Buildings – Intelligentes Lastmanagement in Bürogebäuden, OTTI Forum Green Cities, Regensburg 29. – 30. September 2011, ISBN 978-3-941785-67-0 (Vortrag & Tagungsbandbeitrag)
    • Florian Sänger, Johannes Jungwirth, Josef Lipp: Mikro-BHKW-Feldmessungen mit NI CompactRIO, Virtuelle Instrumente in der Praxis 2011, Begleitband zum 16. VIP Kongress, VDE Verlag, Berlin, Oktober 2011, ISBN 978-3-8007-3329-3 (Tagungsbandbeitrag)
    • Johannes Jungwirth, Josef Lipp, Florian Sänger: Die NI LabVIEW Academy an der TU München – Einführung der Lehrveranstaltung „LabVIEW in der Energiewirtschaft“, Begleitband zum 16. VIP Kongress, VDE Verlag, Berlin, Oktober 2011, ISBN 978-3-8007-3329-3 (Vortrag & Tagungsbandbeitrag)
    • Johannes Jungwirth, Christian Berger, Timm Rössel: Umsetzung eines Lastmanagements in Bürogebäuden, Internationaler ETG-Kongress 2011, Würzburg, 08. –09. November 2011, ISBN 978-3-8007-3376-7 (Poster & Tagungsbandbeitrag)
    • Johannes Jungwirth, Timm Rössel: Smart Buildings als zukünftige Speicher – Chancen und Möglichkeiten von Speichern und Lastmanagement, 17. Herbstseminar 2011 – 100 Prozent Erneuerbar mit Energieeffizienz, Bern, 24. November 2011 (Vortrag & Tagungsbandbeitrag)
    • Johannes Jungwirth, Timm Rössel: Smart Buildings als zukünftige Speicher, Chancen und Möglichkeiten von Speichern und Lastmanagement, Der Weg zum Energieneutralen Bauen in Liechtenstein, ecowerk Fachverein für Aus- und Weiterbildung für energieeffiziente Gebäude im Fürstentum Liechtenstein, Vaduz, 27.01.2012 (Vortrag)
    • Johannes Jungwirth, Markus Fischer, Timm Rössel: Aufbau einer Hardware-in-the-Loop Versuchsumgebung für Gebäudeautomationssysteme, Begleitband zum 17. VIP-Kongress, VDE Verlag, Berlin, Oktober 2012, ISBN 978-3-8007-3412-2 (Vortrag & Tagungsbandbeitrag)
    • Josef Lipp, Florian Sänger, Johannes Jungwirth, Clemens Orendt: Modellversuch zur Stromspeicherung in Form von Wasserstoff im zukünftigen Energiesystem, Begleitband zum 17. VIP-Kongress, VDE Verlag, Berlin, Oktober 2012, ISBN 978-3-8007-3412-2 (Vortrag {Josef Lipp} & Tagungsbandbeitrag)
    • Johannes Jungwirth, Timm Rössel, Florian Sänger, Jakob Schneegans, Milica Grahovac, Simon Herzog, Vesna Mikulovic: SmartBuildings – Implementierung von Lastmanagementsystemen, VDE-Kongress 2012 Stuttgart, 5.-6. November 2012, ISBN 978-3-8007-3446-7, (Vortrag & Tagungsbandbeitrag)
    • Johannes Jungwirth: Die zukünftige Energieversorgung in Bayern, Agenda 21 Arbeitskreis Energie und Umwelt, Mallersdorf-Pfaffenberg, 28.11.2012 (Vortrag)Johannes Jungwirth: SmartBuildings in SmartGrids, Science-Business Interface for Innovation, JRC-TUM Partnership Event "Emerging Smart Electricity Systems", Munich, 20th-21st March 2013 (Vortrag)
    • Dennis Atabay, Simon Herzog, Florian Sänger, Johannes Jungwirth, Vesna Mikulovic: Self-Adapting Building Models and Optimized HVAC Scheduling for Demand Side Management, CIRED 22ndInternational Conference on Electricity Distribution, Stockholm 10-13 June 2013
    • Simon Herzog, Dennis Atabay, Johannes Jungwirth, Vesna Mikulovic: Self-Adapting Building Models for Model Predictive Control, Building Simulation 2013, Chambery 25-28 August 2013
    • Johannes Jungwirth, Vesna Mikulovic, Mike Pichler, Timm Rössel: Smart Buildings – flexible Teilnehmer in Smart Grids, smart city – Wiener Know-how aus Wissenschaft und Forschung, ISBN: 978-3-900607-50-0, Schmid Verlag, Wien, 2013
    • Johannes Jungwirth, Philipp Schaltenberg: KWK-und Wärmespeicheroptimierung – Den Betrieb bestehender Heizkraftwerke wirtschaftlich optimieren, 11. Bayerisches Energie Forum, München, 28. Juni 2018 (Vortrag und Veröffentlichung im Sonderdruck der Bayerischen Gemeindezeitung)
    • Johannes Jungwirth: KWK als Ergänzung zu Wind und Sonne – Flexibilität heben mit aktivem Wärmespeichermanagement, Stadtwerke Forum – Das Stadtwerk der Zukunft, Köln, 07.-08. November 2019
    • Johannes Jungwirth: Mit KI wirtschaftlich steuern, stadt + werk, Ausgabe 01/02 2020, K21 media AG, Tübingen, 2020

    Ralph-Peter Kappestein

    Leiter Studierendenservice der School of Business and Technology (SBT)

    0981 4877-143 BHS 3.02 (Brauhausstraße 15, 91522 Ansbach) nach Vereinbarung vCard

    Ralph-Peter Kappestein

    Leiter Studierendenservice der School of Business and Technology (SBT)

    Funktionen:

    • Leiter Studierendenservice der School of Business and Technology (SBT)
    Jennifer Herud – Zentrumsassistentin Studien- und Technologiezentrum Feuchtwangen (FEU)

    Jennifer Herud

    Zentrumsassistentin Studien- und Technologiezentrum Feuchtwangen (FEU)

    09852 86398-120 FEU 2.1.2 (An der Hochschule 1, 91555 Feuchtwangen) nach Vereinbarung vCard

    Jennifer Herud

    Jennifer Herud – Zentrumsassistentin Studien- und Technologiezentrum Feuchtwangen (FEU)

    Zentrumsassistentin Studien- und Technologiezentrum Feuchtwangen (FEU)

    Funktionen:

    • Zentrumsassistentin Studien- und Technologiezentrum Feuchtwangen (FEU)

    Violetta Remel

    Violetta Remel – Fakultätsassistentin Technik

    Fakultätsassistentin Technik

    Funktionen:

    • Fakultätsassistentin Technik

    Betreute Studiengänge:

    • Wirtschaftsingenieurwesen (WIG)
    • Nachhaltige Ingenieurwissenschaften (AIW/NIW; AIW läuft aus)
    • Smart Energy Systems (SES)
    • Sustainable Building Systems (SBS)
    • Wirtschaftsingenieurwesen (WIN/WIT)
    Dipl.-Ing. (FH) Oliver Abel – Laboringenieur Studien- und Technologiezentrum Feuchtwangen (FEU)

    Dipl.-Ing. (FH) Oliver Abel

    Laboringenieur Studien- und Technologiezentrum Feuchtwangen (FEU)

    09852 86398-240 FEU 2.1.2 (An der Hochschule 1, 91555 Feuchtwangen) nach Vereinbarung vCard

    Dipl.-Ing. (FH) Oliver Abel

    Dipl.-Ing. (FH) Oliver Abel – Laboringenieur Studien- und Technologiezentrum Feuchtwangen (FEU)

    Laboringenieur Studien- und Technologiezentrum Feuchtwangen (FEU)

    Funktionen:

    • Laboringenieur Studien- und Technologiezentrum Feuchtwangen (FEU)
    Thomas Haupt, M.Sc. (FH) – Wissenschaftlicher Mitarbeiter am Campus Feuchtwangen

    Thomas Haupt, M.Sc. (FH)

    Wissenschaftlicher Mitarbeiter am Campus Feuchtwangen

    09852 86398-150 FEU 2.1.1 nach Vereinbarung vCard

    Thomas Haupt, M.Sc. (FH)

    Thomas Haupt, M.Sc. (FH) – Wissenschaftlicher Mitarbeiter am Campus Feuchtwangen

    Wissenschaftlicher Mitarbeiter am Campus Feuchtwangen

    Funktionen:

    • Wissenschaftlicher Mitarbeiter am Campus Feuchtwangen